Induction and nuclear translocation of hypoxia-inducible factor-1 (HIF-1): heterodimerization with ARNT is not necessary for nuclear accumulation of HIF-1alpha.
نویسندگان
چکیده
Hypoxia-inducible factor-1 (HIF-1) is a master regulator of mammalian oxygen homeostasis. HIF-1 consists of two subunits, HIF-1alpha and the aryl hydrocarbon receptor nuclear translocator (ARNT). Whereas hypoxia prevents proteasomal degradation of HIF-1alpha, ARNT expression is thought to be oxygen-independent. We and others previously showed that ARNT is indispensable for HIF-1 DNA-binding and transactivation function. Here, we have used ARNT-mutant mouse hepatoma and embryonic stem cells to examine the requirement of ARNT for accumulation and nuclear translocation of HIF-1alpha in hypoxia. As shown by immunofluorescence, HIF-1alpha accumulation in the nucleus of hypoxic cells was independent of the presence of ARNT, suggesting that nuclear translocation is intrinsic to HIF-1alpha. Co-immunoprecipitation of HIF-1alpha together with ARNT could be performed in nuclear extracts but not in cytosolic fractions, implying that formation of the HIF-1 complex occurs in the nucleus. A proteasome inhibitor and a thiol-reducing agent could mimic hypoxia by inducing HIF-1alpha in the nucleus, indicating that escape from proteolytic degradation is sufficient for accumulation and nuclear translocation of HIF-1alpha. During biochemical separation, both HIF-1alpha and ARNT tend to leak from the nuclei in the absence of either subunit, suggesting that heterodimerization is required for stable association within the nuclear compartment. Nuclear stabilization of the heterodimer might also explain the hypoxically increased total cellular ARNT levels observed in some of the cell lines examined.
منابع مشابه
A new HIF-1 alpha variant induced by zinc ion suppresses HIF-1-mediated hypoxic responses.
The expressions of hypoxia-inducible genes are upregulated by hypoxia-inducible factor 1 (HIF-1), which is a heterodimer of HIF-1alpha and HIF-1beta/ARNT (aryl hydrocarbon receptor nuclear transporter). Under hypoxic conditions, HIF-1alpha becomes stabilized and both HIF-1alpha and ARNT are translocated into the nucleus and codimerized, binding to the HIF-1 consensus sequence and transactivatin...
متن کاملCasein kinase 1 regulates human hypoxia-inducible factor HIF-1.
Hypoxia-inducible factor 1 (HIF-1), a transcriptional activator that mediates cellular response to hypoxia and a promising target of anticancer therapy, is essential for adaptation to low oxygen conditions, embryogenesis and tumor progression. HIF-1 is a heterodimer of HIF-1alpha, expression of which is controlled by oxygen levels as well as by various oxygen-independent mechanisms, and HIF-1be...
متن کاملInteraction of the PAS B domain with HSP90 accelerates hypoxia-inducible factor-1alpha stabilization.
Hypoxia-inducible factor (HIF) alpha subunits are induced under hypoxic conditions, when limited oxygen supply prevents prolyl hydroxylation-dependent binding of the ubiquitin ligase pVHL and subsequent proteasomal degradation. A short normoxic half-life of HIF-alpha and a very rapid hypoxic protein stabilization are crucial to the cellular adaptation to changing oxygen supply. However, the mol...
متن کاملNon-hypoxic transcriptional activation of the aryl hydrocarbon receptor nuclear translocator in concert with a novel hypoxia-inducible factor-1alpha isoform.
Aryl hydrocarbon receptor nuclear translocator (ARNT) belongs to the basic helix-loop-helix Per-Arnt-Sim (bHLH PAS) protein which dimerizes with other PAS proteins. Although it has a transactivation domain (TAD), ARNT functions as an assistant partner of main factors, such as aryl hydrocarbon receptor and hypoxia-inducible factors, rather than acting as a straightforward transcription factor. H...
متن کاملRole of CBP in regulating HIF-1-mediated activation of transcription.
The hypoxia-inducible factor-1 (HIF-1) is a key regulator of oxygen homeostasis in the cell. We have previously shown that HIF-1alpha and the transcriptional coactivator CBP colocalize in accumulation foci within the nucleus of hypoxic cells. In our further exploration of the hypoxia-dependent regulation of HIF-1alpha function by transcriptional coactivators we observed that coexpression of SRC...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of cell science
دوره 112 ( Pt 8) شماره
صفحات -
تاریخ انتشار 1999